home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Amiga Games: Greatest Hits 1996
/
Amiga Games: Greatest Hits 1996.iso
/
archive
/
userbox
/
publicdomain
/
fractal.lha
/
fractal
/
source_amiga
/
enc.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-07-02
|
40KB
|
960 lines
/**************************************************************************/
/* Encode a byte image using a fractal scheme with a quadtree partition */
/* */
/* Copyright 1993,1994 Yuval Fisher. All rights reserved. */
/* */
/* Version 0.03 3/14/94 */
/**************************************************************************/
/* see CHANGES.AMIGA for which changes done for the Amiga port
by Andreas R. Kleinert
V1.0: 02-July-96
*/
#include <stdio.h>
#include <math.h>
/* added by ak */
#include <string.h>
#include <stdlib.h>
#include <m68881.h>
/* eo - added by ak */
#define DEBUG 0
#define GREY_LEVELS 255
#define bound(a) ((a) < 0.0 ? 0 : ((a)>255.0? 255 : a))
#define IMAGE_TYPE unsigned char /* may be different in some applications */
/* various function declarations to keep compiler warnings away. ANSI */
/* prototypes can go here, for the hearty. */
void fatal();
#ifdef EXCLUDED_AK
char *malloc();
char *strcpy();
#endif /* EXCLUDED_AK */
/* The following #define allocates an hsize x vsize matrix of type TYPE */
#define matrix_allocate(matrix, hsize, vsize, TYPE) {\
TYPE *imptr; \
int _i; \
matrix = (TYPE **)malloc((vsize)*sizeof(TYPE *));\
imptr = (TYPE*)malloc((long)(hsize)*(long)(vsize)*sizeof(TYPE));\
if (imptr == NULL) \
fatal("\nNo memory in matrix allocate."); \
for (_i = 0; _i<vsize; ++_i, imptr += hsize) \
matrix[_i] = imptr; \
}
#define swap(a,b,TYPE) {TYPE _temp; _temp=b; b=a; a= _temp;}
IMAGE_TYPE **image; /* The input image data */
double **domimage[4]; /* Decimated input image used for domains */
double max_scale = 1.0; /* Maximum allowable grey level scale factor */
int s_bits = 5, /* Number of bits used to store scale factor */
o_bits = 7, /* Number of bits used to store offset */
min_part = 4, /* Min and max _part determine a range of */
max_part = 6, /* Range sizes from hsize>>min to hsize>>max */
dom_step = 1, /* Density of domains relative to size */
dom_step_type = 0, /* Flag for dom_step a multiplier or divisor */
dom_type = 0, /* Method of generating domain pool 0,1,2.. */
only_positive = 0, /* A flag specifying use of positive scaling */
subclass_search = 0, /* A flag specifying classes searched */
fullclass_search = 0, /* A flag specifying classes searched */
*bits_needed, /* Number of bits to encode domain position. */
zero_ialpha, /* The const ialpha when alpha = 0 */
max_exponent; /* The max power of 2 side of square image */
/* that fits in our input image. */
/* The class_transform gives the transforms */
/* between classification numbers for */
/* negative scaling values, when brightest */
/* becomes darkest, etc... */
int class_transform[2][24] = {23,17,21,11,15,9,22,16,19,5,13,3,20,10,18,
4,7,1,14,8,12,2,6,0,
16,22,10,20,8,14,17,23,4,18,2,12,11,21,5,
19,0,6,9,15,3,13,1,7};
/* rot_transform gives the rotations for */
/* domains with negative scalings. */
int rot_transform[2][8] = {7,4,5,6,1,2,3,0, 2,3,0,1,6,7,4,5};
struct domain_data {
int *no_h_domains, /* The number of domains horizontally for */
*no_v_domains, /* each size. */
*domain_hsize, /* The size of the domain. */
*domain_vsize, /* The size of the domain. */
*domain_hstep, /* The density of the domains. */
*domain_vstep; /* The density of the domains. */
struct domain_pixels { /* This is a three (sigh) index array that */
int dom_x, dom_y; /* dynamically allocated. The first index is */
double sum,sum2; /* the domain size, the other are two its */
int sym; /* position. It contains the sum and sum^2 */
} ***pixel; /* of the pixel values in the domains, which */
} domain; /* are computed just once. */
struct classified_domain { /* This is a list which containes */
struct domain_pixels *the; /* pointers to the domain data */
struct classified_domain *next; /* in the structure above. There */
} **the_domain[3][24]; /* are three classes with 24 sub- */
/* classes. Using this array, only */
/* domains and ranges in the same */
/* class are compared.. */
/* The first pointer points to the */
/* domain size the the second to */
/* list of domains. */
FILE *output; /* Output FILE containing compressed data */
main(argc,argv)
int argc;
char **argv;
/* Usage: quadfrac [tol [inputfilename [outputfilename [hsize [vsize]]]]] */
{
/* Defaults are set initially */
double tol = 8.0; /* Tolerance value for quadtree. */
char inputfilename[200];
char outputfilename[200];
int i,j,k,
hsize = -1, /* The horizontal and vertical */
vsize = -1; /* size of the input image. */
long stripchar=0; /* chars to ignore in input file. */
FILE *input;
inputfilename[0] = 1; /* We initially set the input to this and */
outputfilename[0] = 1; /* then check if the input/output names */
/* have been set below. */
/* scan through the input line and read in the arguments */
for (i=1; i<argc; ++i)
if (argv[i][0] != '-' )
if (inputfilename[0] == 1)
strcpy(inputfilename, argv[i]);
else if (outputfilename[0] == 1)
strcpy(outputfilename, argv[i]);
else;
else { /* we have a flag */
if (strlen(argv[i]) == 1) break;
switch(argv[i][1]) {
case 't': tol = atof(argv[++i]);
break;
case 'S': stripchar = atoi(argv[++i]);
break;
case 'x':
case 'w': hsize = atoi(argv[++i]);
break;
case 'y':
case 'h': vsize = atoi(argv[++i]);
break;
case 'D': dom_type = atoi(argv[++i]);
break;
case 'd': dom_step = atoi(argv[++i]);
if (dom_step < 0 || dom_step > 15)
fatal("\n Bad domain step.");
break;
case 's': s_bits = atoi(argv[++i]);
break;
case 'o': o_bits = atoi(argv[++i]);
break;
case 'm': min_part = atoi(argv[++i]);
break;
case 'M': max_part = atoi(argv[++i]);
break;
case 'e': dom_step_type= 1;
break;
case 'p': only_positive = 1;
break;
case 'f': subclass_search = 1;
break;
case 'F': fullclass_search = 1;
break;
case 'N': max_scale = atof(argv[++i]);
break;
case '?':
case 'H':
default:
printf("\nUsage: enc -[options] [inputfile [outputfile]]");
printf("\nOptions are: (# = number), defaults show in ()");
printf("\n -t # tolerance criterion for fidelity. (%lf)", tol);
printf("\n -m # minimum quadtree partitions. (%d)",min_part);
printf("\n -M # maximum quadtree partitions. (%d)",max_part);
printf("\n -S # number of input bytes to ignore. (%ld)",stripchar);
printf("\n -w # width (horizontal size) of input data. (256)");
printf("\n -h # height (vertical size) of input data. (256)");
printf("\n -d # domain step size. (%d)", dom_step);
printf("\n -D # method {0,1,2} for domain pool (%d)",dom_type);
printf("\n -s # number of scaling quantizing bits. (%d)",s_bits);
printf("\n -o # number of offset quantizing bits. (%d)",o_bits);
printf("\n -N # maximum scaling in encoding. (%lf)",max_scale);
printf("\n -e domain step as multiplier not divisor. (off)");
printf("\n -p use only positive scaling (for speed). (off)");
printf("\n -f search 24 domain classes (for fidelity). (off)");
printf("\n -F search 3 domain classes (for fidelity). (off)");
fatal("\n -F and -f can be used together.");
}
}
if (inputfilename[0] == 1) strcpy(inputfilename, "lenna.dat");
if (outputfilename[0] == 1) strcpy(outputfilename, "lenna.trn");
if (hsize == -1)
if (vsize == -1) hsize = vsize = 256;
else hsize = vsize;
else
if (vsize == -1) vsize = hsize;
/* allocate memory for the input image. Allocating one chunck saves */
/* work and time later. */
matrix_allocate(image, hsize, vsize, IMAGE_TYPE)
matrix_allocate(domimage[0], hsize/2, vsize/2, double)
matrix_allocate(domimage[1], hsize/2, vsize/2, double)
matrix_allocate(domimage[2], hsize/2, vsize/2, double)
matrix_allocate(domimage[3], hsize/2, vsize/2, double)
/* max_ & min_ part are variable, so this must be run time allocated */
bits_needed = (int *)malloc(sizeof(int)*(1+max_part-min_part));
if ((input = fopen(inputfilename, "r")) == NULL)
fatal("Can't open input file.");
/* skip the first stripchar chars */
fseek(input, stripchar, 0);
i = fread(image[0], sizeof(IMAGE_TYPE), hsize*vsize, input);
fclose(input);
if (i < hsize*vsize)
fatal("Not enough input data in the input file.");
else
printf("%dx%d=%d pixels read from %s.", hsize,vsize,i,inputfilename);
/* allcate memory for domain data and initialize it */
compute_sums(hsize,vsize);
if ((output = fopen(outputfilename, "w")) == NULL)
fatal("Can't open output file.");
/* output some data into the outputfile. */
pack(4,(long)min_part,output);
pack(4,(long)max_part,output);
pack(4,(long)dom_step,output);
pack(1,(long)dom_step_type,output);
pack(2,(long)dom_type,output);
pack(12,(long)hsize,output);
pack(12,(long)vsize,output);
/* This is the quantized value of zero scaling.. needed later */
zero_ialpha = 0.5 + (max_scale)/(2.0*max_scale)*(1<<s_bits);
/* The following routine takes a rectangular image and calls the */
/* quadtree routine to encode square sum-images in it. */
/* the tolerance is a parameter since in some applications different */
/* regions of the image may need to be compressed to different tol's */
printf("\nEncoding Image.....");
fflush(stdout);
partition_image(0, 0, hsize,vsize, tol);
printf("Done.");
fflush(stdout);
/* stuff the last byte if needed */
pack(-1,(long)0,output);
fclose(output);
i = pack(-2,(long)0,output);
printf("\n Compression = %lf from %d bytes written in %s.\n",
(double)(hsize*vsize)/(double)i, i, outputfilename);
/* Free allocated memory*/
free(bits_needed);
free(domimage[0]);
free(domimage[1]);
free(domimage[2]);
free(domimage[3]);
free(domain.no_h_domains);
free(domain.no_v_domains);
free(domain.domain_hsize);
free(domain.domain_vsize);
free(domain.domain_hstep);
free(domain.domain_vstep);
for (i=0; i <= max_part-min_part; ++i)
free(domain.pixel[i]);
free(domain.pixel);
free(image[0]);
for (i=0; i <= max_part-min_part; ++i)
for (k=0; k<3; ++k)
for (j=0; j<24; ++j) list_free(the_domain[k][j][i]);
return(0);
}
/* ************************************************************** */
/* free memory allocated in the list structure the_domain */
/* ************************************************************** */
list_free(node)
struct classified_domain *node;
{
if (node->next != NULL)
list_free(node->next);
free(node);
}
/* ************************************************************** */
/* return the average pixel value of a region of the image. */
/* ************************************************************** */
void average(x,y,xsize,ysize, psum, psum2)
int x,y,xsize,ysize;
double *psum, *psum2;
{
register int i,j,k;
register double pixel;
*psum = *psum2 = 0.0;
k = ((x%2)<<1) + y%2;
x >>= 1; y >>= 1;
xsize >>= 1; ysize >>= 1;
for (i=x; i<x+xsize; ++i)
for (j=y; j<y+ysize; ++j) {
pixel = domimage[k][j][i];
*psum += pixel;
*psum2 += pixel*pixel;
}
}
/* ************************************************************** */
/* return the average pixel value of a region of the image. This */
/* routine differs from the previous in one slight way. It does */
/* not average 2x2 sub-images to pixels. This is needed for clas- */
/* sifying ranges rather than domain where decimation is needed. */
/* ************************************************************** */
void average1(x,y,xsize,ysize, psum, psum2)
int x,y,xsize,ysize;
double *psum, *psum2;
{
register int i,j;
register double pixel;
*psum = *psum2 = 0.0;
for (i=x; i<x+xsize; ++i)
for (j=y; j<y+ysize; ++j) {
pixel = (double)image[j][i];
*psum += pixel;
*psum2 += pixel*pixel;
}
}
/* ************************************************************** */
/* Take a region of the image at x,y and classify it. */
/* The four quadrants of the region are ordered from brightest to */
/* least bright average value, then it is rotated into one of the */
/* three cannonical orientations possible with the brightest quad */
/* in the upper left corner. */
/* The routine returns two indices that are class numbers: pfirst */
/* and psecond; the symmetry operation that bring the square into */
/* cannonical position; and the sum and sum^2 of the pixel values */
/* ************************************************************** */
classify(x, y, xsize, ysize, pfirst, psecond, psym, psum, psum2, type)
int x,y,xsize,ysize, /* position, size of subimage to be classified */
*pfirst, *psecond, /* returned first and second class numbers */
*psym; /* returned symmetry operation that brings the */
/* subimage to cannonical position. */
double *psum, *psum2; /* returned sum and sum^2 of pixel values */
int type; /* flag for decimating (for domains) or not */
{
int order[4], i,j;
double a[4],a2[4];
void (*average_func)();
if (type == 2) average_func = average; else average_func = average1;
/* get the average values of each quadrant */
(*average_func)(x,y, xsize/2,ysize/2, &a[0], &a2[0]);
(*average_func)(x,y+ysize/2, xsize/2,ysize/2, &a[1], &a2[1]);
(*average_func)(x+xsize/2,y+ysize/2, xsize/2,ysize/2, &a[2], &a2[2]);
(*average_func)(x+xsize/2,y, xsize/2,ysize/2, &a[3], &a2[3]);
*psum = a[0] + a[1] + a[2] + a[3];
*psum2 = a2[0] + a2[1] + a2[2] + a2[3];
for (i=0; i<4; ++i) {
/* after the sorting below order[i] is the i-th brightest */
/* quadrant. */
order[i] = i;
/* convert a2[] to store the variance of each quadrant */
a2[i] -= (double)(1<<(2*type))*a[i]*a[i]/(double)(xsize*ysize);
}
/* Now order the average value and also in order[], which will */
/* then tell us the indices (in a[]) of the brightest to darkest */
for (i=2; i>=0; --i)
for (j=0; j<=i; ++j)
if (a[j]<a[j+1]) {
swap(order[j], order[j+1],int)
swap(a[j], a[j+1],double)
}
/* because of the way we ordered the a[] the rotation can be */
/* read right off of order[]. That will make the brightest */
/* quadrant be in the upper left corner. But we must still */
/* decide which cannonical class the image portion belogs */
/* to and whether to do a flip or just a rotation. This is */
/* the following table summarizes the horrid lines below */
/* order class do a rotation */
/* 0,2,1,3 0 0 */
/* 0,2,3,1 0 1 */
/* 0,1,2,3 1 0 */
/* 0,3,2,1 1 1 */
/* 0,1,3,2 2 0 */
/* 0,3,1,2 2 1 */
*psym = order[0];
/* rotate the values */
for (i=0; i<4; ++i)
order[i] = (order[i] - (*psym) + 4)%4;
for (i=0; order[i] != 2; ++i);
*pfirst = i-1;
if (order[3] == 1 || (*pfirst == 2 && order[2] == 1)) *psym += 4;
/* Now further classify the sub-image by the variance of its */
/* quadrants. This give 24 subclasses for each of the 3 classes */
for (i=0; i<4; ++i) order[i] = i;
for (i=2; i>=0; --i)
for (j=0; j<=i; ++j)
if (a2[j]<a2[j+1]) {
swap(order[j], order[j+1],int)
swap(a2[j], a2[j+1],double)
}
/* Now do the symmetry operation */
for (i=0; i<4; ++i)
order[i] = (order[i] - (*psym%4) + 4)%4;
if (*psym > 3)
for (i=0; i<4; ++i)
if (order[i]%2) order[i] = (2 + order[i])%4;
/* We want to return a class number from 0 to 23 depending on */
/* the ordering of the quadrants according to their variance */
*psecond = 0;
for (i=2; i>=0; --i)
for (j=0; j<=i; ++j)
if (order[j] > order[j+1]) {
swap(order[j],order[j+1], int);
if (order[j] == 0 || order [j+1] == 0)
*psecond += 6;
else if (order[j] == 1 || order [j+1] == 1)
*psecond += 2;
else if (order[j] == 2 || order [j+1] == 2)
*psecond += 1;
}
}
/* ************************************************************ */
/* Compute sum and sum^2 of pixel values in domains for use in */
/* the rms computation later. Since a domain is compared with */
/* many ranges, doing this just once saves a lot of computation */
/* This routine also fills a list structure with the domains */
/* as they are classified and creates the memory for the domain */
/* data in a matrix. */
/* ************************************************************ */
compute_sums(hsize,vsize)
int hsize,vsize;
{
int i,j,k,l,
domain_x,
domain_y,
first_class,
second_class,
domain_size,
domain_step_size,
size,
x_exponent,
y_exponent;
struct classified_domain *node;
printf("\nComputing domain sums... ");
fflush(stdout);
/* pre-decimate the image into domimage to avoid having to */
/* do repeated averaging of 2x2 pixel groups. */
/* There are 4 ways to decimate the image, depending on the */
/* location of the domain, odd or even address. */
for (i=0; i<2; ++i)
for (j=0; j<2; ++j)
for (k=i; k<hsize-i; k += 2)
for (l=j; l<vsize-j; l += 2)
domimage[(i<<1)+j][l>>1][k>>1] =
((double)image[l][k] + (double)image[l+1][k+1] +
(double)image[l][k+1] + (double)image[l+1][k])*0.25;
/* Allocate memory for the sum and sum^2 of domain pixels */
/* We first compute the size of the largest square that fits in */
/* the image. */
x_exponent = (int)floor(log((double)hsize)/log(2.0));
y_exponent = (int)floor(log((double)vsize)/log(2.0));
/* exponent is min of x_ and y_ exponent */
max_exponent = (x_exponent > y_exponent ? y_exponent : x_exponent);
/* size is the size of the largest square that fits in the image */
/* It is used to compute the domain and range sizes. */
size = 1<<max_exponent;
if (max_exponent < max_part)
fatal("Reduce maximum number of quadtree partitions.");
if (max_exponent-2 < max_part)
printf("\nWarning: so many quadtree partitions yield absurd ranges.");
i = max_part - min_part + 1;
domain.no_h_domains = (int *)malloc(sizeof(int)*i);
domain.no_v_domains = (int *)malloc(sizeof(int)*i);
domain.domain_hsize = (int *)malloc(sizeof(int)*i);
domain.domain_vsize = (int *)malloc(sizeof(int)*i);
domain.domain_hstep = (int *)malloc(sizeof(int)*i);
domain.domain_vstep = (int *)malloc(sizeof(int)*i);
domain.pixel= (struct domain_pixels ***)
malloc(i*sizeof(struct domain_pixels **));
if (domain.pixel == NULL) fatal("No memory for domain pixel sums.");
for (i=0; i <= max_part-min_part; ++i) {
/* first compute how many domains there are horizontally */
domain.domain_hsize[i] = size >> (min_part+i-1);
if (dom_type == 2)
domain.domain_hstep[i] = dom_step;
else if (dom_type == 1)
if (dom_step_type == 1)
domain.domain_hstep[i] = (size >> (max_part - i-1))*dom_step;
else
domain.domain_hstep[i] = (size >> (max_part - i-1))/dom_step;
else
if (dom_step_type == 1)
domain.domain_hstep[i] = domain.domain_hsize[i]*dom_step;
else
domain.domain_hstep[i] = domain.domain_hsize[i]/dom_step;
domain.no_h_domains[i] = 1+(hsize-domain.domain_hsize[i])/
domain.domain_hstep[i];
/* bits_needed[i][0] = ceil(log(domain.no_h_domains[i])/log(2.0)); */
/* now compute how many domains there are vertically. The sizes */
/* are the same for square domains, but not for rectangular ones */
domain.domain_vsize[i] = size >> (min_part+i-1);
if (dom_type == 2)
domain.domain_vstep[i] = dom_step;
else if (dom_type == 1)
if (dom_step_type == 1)
domain.domain_vstep[i] = (size >> (max_part - i-1))*dom_step;
else
domain.domain_vstep[i] = (size >> (max_part - i-1))/dom_step;
else
if (dom_step_type == 1)
domain.domain_vstep[i] = domain.domain_vsize[i]*dom_step;
else
domain.domain_vstep[i] = domain.domain_vsize[i]/dom_step;
domain.no_v_domains[i] = 1+(vsize-domain.domain_vsize[i])/
domain.domain_vstep[i];
/* Now compute the number of bits needed to store the domain data */
bits_needed[i] = ceil(log((double)domain.no_h_domains[i]*
(double)domain.no_v_domains[i])/log(2.0));
matrix_allocate(domain.pixel[i], domain.no_h_domains[i],
domain.no_v_domains[i], struct domain_pixels)
}
/* allocate and zero the list containing the classified domain data */
i = max_part - min_part + 1;
for (first_class = 0; first_class < 3; ++first_class)
for (second_class = 0; second_class < 24; ++second_class) {
the_domain[first_class][second_class] =
(struct classified_domain **)
malloc(i*sizeof(struct classified_domain *));
for (j=0; j<i; ++j)
the_domain[first_class][second_class][j] = NULL;
}
/* Precompute sum and sum of squares for domains */
/* This part can get faster for overlapping domains if repeated */
/* sums are avoided */
for (i=0; i <= max_part-min_part; ++i) {
for (j=0,domain_x=0; j<domain.no_h_domains[i]; ++j,
domain_x+=domain.domain_hstep[i])
for (k=0,domain_y=0; k<domain.no_v_domains[i]; ++k,
domain_y+=domain.domain_vstep[i]) {
classify(domain_x, domain_y,
domain.domain_hsize[i],
domain.domain_vsize[i],
&first_class, &second_class,
&domain.pixel[i][k][j].sym,
&domain.pixel[i][k][j].sum,
&domain.pixel[i][k][j].sum2, 2);
/* When the domain data is referenced from the list, we need to */
/* know where the domain is.. so we have to store the position */
domain.pixel[i][k][j].dom_x = j;
domain.pixel[i][k][j].dom_y = k;
node = (struct classified_domain *)
malloc(sizeof(struct classified_domain));
/* put this domain in the classified list structure */
node->the = &domain.pixel[i][k][j];
node->next = the_domain[first_class][second_class][i];
the_domain[first_class][second_class][i] = node;
}
}
/* Now we make sure no domain class is actually empty. */
for (i=0; i <= max_part-min_part; ++i)
for (first_class = 0; first_class < 3; ++first_class)
for (second_class = 0; second_class < 24; ++second_class)
if (the_domain[first_class][second_class][i] == NULL) {
node = (struct classified_domain *)
malloc(sizeof(struct classified_domain));
node->the = &domain.pixel[i][0][0];
node->next = NULL;
the_domain[first_class][second_class][i] = node;
}
printf("Done.");
fflush(stdout);
}
/* ************************************************************ */
/* pack value using size bits and output into foutf */
/* ************************************************************ */
int pack(size, value, foutf)
int size; long int value;
FILE *foutf;
{
int i;
static int ptr = 1, /* how many bits are packed in sum so far */
sum = 0, /* packed bits */
num_of_packed_bytes = 0; /* total bytes written out */
/* size == -1 means we are at the end, so write out what is left */
if (size == -1 && ptr != 1) {
fputc(sum<<(8-ptr), foutf);
++num_of_packed_bytes;
return(0);
}
/* size == -2 means we want to know how many bytes we have written */
if (size == -2)
return(num_of_packed_bytes);
for (i=0; i<size; ++i, ++ptr, value = value>>1, sum = sum<<1) {
if (value & 1) sum |= 1;
if (ptr == 8) {
fputc(sum,foutf);
++num_of_packed_bytes;
sum=0;
ptr=0;
}
}
}
/* ************************************************************ */
/* Compare a range to a domain and return rms and the quantized */
/* scaling and offset values (pialhpa, pibeta). */
/* ************************************************************ */
double compare(atx,aty, xsize, ysize, depth, rsum, rsum2, dom_x,dom_y,
sym_op, pialpha,pibeta)
int atx, aty, xsize, ysize, depth, dom_x, dom_y, sym_op, *pialpha, *pibeta;
double rsum, rsum2;
{
int i, j, i1, j1, k,
domain_x,
domain_y; /* The domain position */
double pixel,
det, /* determinant of solution */
dsum, /* sum of domain values */
rdsum = 0, /* sum of range*domain values */
dsum2, /* sum of domain^2 values */
w2 = 0, /* total number of values tested */
rms = 0, /* root means square difference */
alpha, /* the scale factor */
beta; /* The offset */
/* xsize = hsize >> depth; */
/* ysize = vsize >> depth; */
w2 = xsize * ysize;
dsum = domain.pixel[depth-min_part][dom_y][dom_x].sum;
dsum2 = domain.pixel[depth-min_part][dom_y][dom_x].sum2;
domain_x = (dom_x * domain.domain_hstep[depth-min_part]);
domain_y = (dom_y * domain.domain_vstep[depth-min_part]);
k = ((domain_x%2)<<1) + domain_y%2;
domain_x >>= 1;
domain_y >>= 1;
/* The main statement in this routine is a switch statement which */
/* scans through the domain and range to compare them. The loop */
/* center is the same so we #define it for easy modification */
#define COMPUTE_LOOP { \
pixel = domimage[k][j1][i1]; \
rdsum += image[j][i]*pixel; \
}
switch(sym_op) {
case 0: for (i=atx, i1 = domain_x; i<atx+xsize; ++i, ++i1)
for (j=aty, j1 = domain_y; j<aty+ysize; ++j, ++j1)
COMPUTE_LOOP
break;
case 1: for (j=aty, i1 = domain_x; j<aty+ysize; ++j, ++i1)
for (i=atx+xsize-1, j1 = domain_y; i>=atx; --i, ++j1)
COMPUTE_LOOP
break;
case 2: for (i=atx+xsize-1, i1 = domain_x; i>=atx; --i, ++i1)
for (j=aty+ysize-1, j1 = domain_y; j>=aty; --j, ++j1)
COMPUTE_LOOP
break;
case 3: for (j=aty+ysize-1, i1 = domain_x; j>=aty; --j, ++i1)
for (i=atx, j1 = domain_y; i<atx+xsize; ++i, ++j1)
COMPUTE_LOOP
break;
case 4: for (j=aty, i1 = domain_x; j<aty+ysize; ++j, ++i1)
for (i=atx, j1 = domain_y; i<atx+xsize; ++i, ++j1)
COMPUTE_LOOP
break;
case 5: for (i=atx, i1 = domain_x; i<atx+xsize; ++i, ++i1)
for (j=aty+ysize-1, j1 = domain_y; j>=aty; --j, ++j1)
COMPUTE_LOOP
break;
case 6: for (j=aty+ysize-1, i1 = domain_x; j>=aty; --j, ++i1)
for (i=atx+xsize-1, j1 = domain_y; i>=atx; --i, ++j1)
COMPUTE_LOOP
break;
case 7: for (i=atx+xsize-1, i1 = domain_x; i>=atx; --i, ++i1)
for (j=aty, j1 = domain_y; j<aty+ysize; ++j, ++j1)
COMPUTE_LOOP
break;
}
det = (xsize*ysize)*dsum2 - dsum*dsum;
if (det == 0.0)
alpha = 0.0;
else
alpha = (w2*rdsum - rsum*dsum)/det;
if (only_positive && alpha < 0.0) alpha = 0.0;
*pialpha = 0.5 + (alpha + max_scale)/(2.0*max_scale)*(1<<s_bits);
if (*pialpha < 0) *pialpha = 0;
if (*pialpha >= 1<<s_bits) *pialpha = (1<<s_bits)-1;
/* Now recompute alpha back */
alpha = (double)*pialpha/(double)(1<<s_bits)*(2.0*max_scale)-max_scale;
/* compute the offset */
beta = (rsum - alpha*dsum)/w2;
/* Convert beta to an integer */
/* we use the sign information of alpha to pack efficiently */
if (alpha > 0.0) beta += alpha*GREY_LEVELS;
*pibeta = 0.5 + beta/
((1.0+fabs(alpha))*GREY_LEVELS)*((1<<o_bits)-1);
if (*pibeta< 0) *pibeta = 0;
if (*pibeta>= 1<<o_bits) *pibeta = (1<<o_bits)-1;
/* Recompute beta from the integer */
beta = (double)*pibeta/(double)((1<<o_bits)-1)*
((1.0+fabs(alpha))*GREY_LEVELS);
if (alpha > 0.0) beta -= alpha*GREY_LEVELS;
/* Compute the rms based on the quantized alpha and beta! */
rms= sqrt((rsum2 + alpha*(alpha*dsum2 - 2.0*rdsum + 2.0*beta*dsum) +
beta*(beta*w2 - 2.0*rsum))/w2);
return(rms);
}
/* ************************************************************ */
/* Recursively partition an image, computing the best transfoms */
/* ************************************************************ */
quadtree(atx,aty,xsize,ysize,tol,depth)
int atx, aty, xsize, ysize, depth;
double tol; /* the tolerance fit */
{
int i,
sym_op, /* A symmetry operation of the square */
ialpha, /* Intgerized scalling factor */
ibeta, /* Intgerized offset */
best_ialpha, /* best ialpha found */
best_ibeta,
best_sym_op,
best_domain_x,
best_domain_y,
first_class,
the_first_class,
first_class_start, /* loop beginning and ending values */
first_class_end,
second_class[2],
the_second_class,
second_class_start, /* loop beginning and ending values */
second_class_end,
range_sym_op[2], /* the operations to bring square to */
domain_sym_op; /* cannonical position. */
struct classified_domain *node; /* var for domains we scan through */
double rms, best_rms, /* rms value and min rms found so far */
sum=0, sum2=0; /* sum and sum^2 of range pixels */
/* keep breaking it down until we are small enough */
if (depth < min_part) {
quadtree(atx,aty, xsize/2, ysize/2, tol,depth+1);
quadtree(atx+xsize/2,aty, xsize/2, ysize/2,tol,depth+1);
quadtree(atx,aty+ysize/2, xsize/2, ysize/2,tol,depth+1);
quadtree(atx+xsize/2,aty+ysize/2, xsize/2, ysize/2,tol,depth+1);
return;
}
/* now search for the best domain-range match and write it out */
best_rms = 10000000000.0; /* just a big number */
classify(atx, aty, xsize,ysize,
&the_first_class, &the_second_class,
&range_sym_op[0], &sum, &sum2, 1);
/* sort out how much to search based on -f and -F input flags */
if (fullclass_search) {
first_class_start = 0;
first_class_end = 3;
} else {
first_class_start = the_first_class;
first_class_end = the_first_class+1;
}
if (subclass_search) {
second_class_start = 0;
second_class_end = 24;
} else {
second_class_start = the_second_class;
second_class_end = the_second_class+1;
}
/* these for loops vary according to the optimization flags we set */
/* for subclass_search and fullclass_search==1, we search all the */
/* domains (except not all rotations). */
for (first_class = first_class_start;
first_class < first_class_end; ++first_class)
for (second_class[0] = second_class_start;
second_class[0] < second_class_end; ++second_class[0]) {
/* We must check each domain twice. Once for positive scaling, */
/* once for negative scaling. Each has its own class and sym_op */
if (!only_positive) {
second_class[1] =
class_transform[(first_class == 2 ? 1 : 0)][second_class[0]];
range_sym_op[1] =
rot_transform[(the_first_class == 2 ? 1 : 0)][range_sym_op[0]];
}
/* only_positive is 0 or 1, so we may or not scan */
for (i=0; i<(2-only_positive); ++i)
for (node = the_domain[first_class][second_class[i]][depth-min_part];
node != NULL;
node = node->next) {
domain_sym_op = node->the->sym;
/* The following if statement figures out how to transform */
/* the domain onto the range, given that we know how to get */
/* each into cannonical position. */
if (((domain_sym_op>3 ? 4: 0) + (range_sym_op[i]>3 ? 4: 0))%8 == 0)
sym_op = (4 + domain_sym_op%4 - range_sym_op[i]%4)%4;
else
sym_op = (4 + (domain_sym_op%4 + 3*(4-range_sym_op[i]%4))%4)%8;
rms = compare(atx,aty, xsize, ysize, depth, sum,sum2,
node->the->dom_x,
node->the->dom_y,
sym_op, &ialpha,&ibeta);
if (rms < best_rms) {
best_ialpha = ialpha;
best_ibeta = ibeta;
best_rms = rms;
best_sym_op = sym_op;
best_domain_x = node->the->dom_x;
best_domain_y = node->the->dom_y;
}
}
}
if (best_rms > tol && depth < max_part) {
/* We didn't find a good enough fit so quadtree down */
pack(1,(long)1,output); /* This bit means we quadtree'd down */
quadtree(atx,aty, xsize/2, ysize/2, tol,depth+1);
quadtree(atx+xsize/2,aty, xsize/2, ysize/2, tol,depth+1);
quadtree(atx,aty+ysize/2, xsize/2, ysize/2, tol,depth+1);
quadtree(atx+xsize/2,aty+ysize/2, xsize/2, ysize/2, tol,depth+1);
} else {
/* The fit was good enough or we just can't get smaller ranges */
/* So write out the data */
if (depth < max_part) /* if we are not at the smallest range */
pack(1,(long)0,output);/* then we must tell the decoder we */
/* stopped quadtreeing */
pack(s_bits, (long)best_ialpha, output);
pack(o_bits, (long)best_ibeta, output);
/* When the scaling is zero, there is no need to store the domain */
if (best_ialpha != zero_ialpha) {
pack(3, (long)best_sym_op, output);
pack(bits_needed[depth-min_part], (long)(best_domain_y*
domain.no_h_domains[depth-min_part]+best_domain_x), output);
}
}
}
/* ************************************************************* */
/* Recursively partition an image, finding the largest contained */
/* square and call the quadtree routine the encode that square. */
/* This enables us to encode rectangular image easily. */
/* ************************************************************* */
partition_image(atx, aty, hsize,vsize, tol)
int atx, aty, hsize,vsize;
double tol;
{
int x_exponent, /* the largest power of 2 image size that fits */
y_exponent, /* horizontally or vertically the rectangle. */
exponent, /* The actual size of image that's encoded. */
size,
depth;
x_exponent = (int)floor(log((double)hsize)/log(2.0));
y_exponent = (int)floor(log((double)vsize)/log(2.0));
/* exponent is min of x_ and y_ exponent */
exponent = (x_exponent > y_exponent ? y_exponent : x_exponent);
size = 1<<exponent;
depth = max_exponent - exponent;
quadtree(atx,aty,size,size,tol,depth);
if (size != hsize)
partition_image(atx+size, aty, hsize-size,vsize, tol);
if (size != vsize)
partition_image(atx, aty+size, size,vsize-size, tol);
}
/* fatal is for when there is a fatal error... print a message and exit */
void fatal(s)
char *s;
{
printf("%s\n",s);
exit(-1);
}